What is big data analytics?

Big data analytics refers to the methods, tools, and applications used to collect, process, and derive insights from varied, high-volume, high-velocity data sets. These data sets may come from a variety of sources, such as web, mobile, email, social media, and networked smart devices. They often feature data that is generated at a high speed and varied in form, ranging from structured (database tables, Excel sheets) to semi-structured (XML files, webpages) to unstructured (images, audio files). Traditional forms of data analysis software aren't equipped to support this level of complexity and scale, which is where the systems, tools, and applications designed specifically for big data analysis come into play.

Why is big data analytics important?

Now you know what big data analytics is. But why does it matter? And most importantly, how can the understanding and use of big data assist us? Data is woven into the everyday fabric of our lives. With the rise of mobile, social media, and smart technologies associated with the Internet of Things (IoT), we now transmit more data than ever before—and at a dizzying speed. Thanks to big data analytics, organizations can now use that information to rapidly improve the way they work, think, and provide value to their customers. With the assistance of tools and applications, big data can help you gain insights, optimize operations, and predict future outcomes. This ability to derive insights to inform better decision making is why big data is important. It's how a retailer might hone their targeted ad campaigns, or how a wholesaler might resolve bottlenecks in the supply chain. It's also how a health care provider might discover new options for clinical care based on patient data trends. Big data analytics enables a more holistic, data-driven approach to decision-making, in turn promoting growth, efficiency, and innovation. Now that you know the importance of big data, as well as the importance of data analytics, let's dive into how big data analytics works.

How does big data analytics work?

Key big data analytics technologies and tools

Though it is often referred to as a single system or solution, big data analytics is actually composed of many individual technologies and tools working together to store, move, scale, and analyze data. They may vary depending on your infrastructure, but here are some of the most common big data analytics tools you'll find:

Collection and storage

Processing

Scrubbing

Analysis

Big data analytics uses and examples

Today, many major industries use different types of data analysis to make more informed decisions around product strategy, operations, sales, marketing, and customer care. Big data analytics makes it possible for any organization that works with large amounts of data to derive meaningful insights from that data. Here are just a few real-life applications out of many:

Big data analytics benefits and challenges

As illustrated by its many use cases, big data benefits organizations across a wide set of industries and a diverse range of contexts. However, given the complex nature of its infrastructure, big data also presents some concerns to consider. Here are a few big data challenges to watch out for:

Despite how much work it can take to set up and manage systems efficiently, the advantages of using big data analytics are well worth the effort. For anyone seeking a more informed, data-driven approach to how they run an organization, big data's long-term benefits are invaluable. Here are just a few: